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Abstract

Results for the vector field problem on projective Stiefel mani-
folds Xn,r

∼= O(n)/(O(n − r) × Z2), 2 ≤ r < n, are derived here;
Xn,1 is (n − 1)-dimensional real projective space, for which these re-
sults are classical. In particular, span(Xn,r) for r = 2, 3, 4, for suit-
able (infinitely many) values of n is calculated. If r = 2 and n is
odd, then additional difficulties present themselves, and one approach
to dealing with this case using the Browder-Dupont invariant is dis-
cussed. Furthermore, when n = 8m−1, by using an explicit version of
the Hurwitz-Radon multiplications, we improve the lower bound for
span(Xn,2) to span(Sn). Two general results and some conjectures on
the span of Xn,r are also presented.
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1 Introduction

The span of a finite dimensional real vector bundle α over a space X, de-
noted span(α), is k if α admits k, but no more than k, everywhere linearly
independent cross-sections. If X is paracompact, then span(α) ≥ k means
that α ≈ η ⊕ kε for some vector bundle η; here and in the sequel ε is the
trivial line bundle and kε denotes the k-fold Whitney sum of ε with itself.
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2 The vector field problem

For a q-dimensional smooth connected manifold M q, one defines its span
to be span(M q) := span(TM q), where TM is the tangent bundle of M . The
manifold M q is parallelizable if its span is q. The problem of determining
the number span(M) is referred to as the vector field problem on M (further
information can be found in [16], [18], [19], [20], [34]).

Besides the span of a manifold one can consider its stable span ([16], [18],
[19], [20]):

span0(M) := span(TM ⊕ ε)− 1. (1)

We remark that the stable span of a given smooth closed manifold M is
interesting even if one is not able to find its span, in the context of fold
maps (a smooth map f : M q → Np with q ≥ p is a fold map if all of its
singular points are of fold type; a singular point x ∈ M is of fold type if for
some local coordinates around x and f(x) one can write f as the assignment
(x1, . . . , xq) 7→ (x1, . . . , xp−1,±x2

p ± x2
p+1 ± · · · ± x2

q); in particular if Np = R,
then a fold map is a Morse function on M). By Y. Ando (cf. [30]), if
dim(M) = q and span0(M) ≥ p − 1 for some p such that q ≥ p ≥ 2, then
there exists a fold map M → Rp. In addition to this, as proved by O.
Saeki ([29]), if q − p is even and there exists a fold map M → Rp, then
span0(M) ≥ p− 1.

Stably parallelizable manifolds (known also as π-manifolds) are those for
which the stable span is the same as the dimension; the Bredon-Kosinski the-
orem ([10]) effectively determines the span of such manifolds. The projective
Stiefel manifolds Xn,r, 1 ≤ r < n, obtained from the ordinary Stiefel man-
ifolds Vn,r of orthonormal r-frames in Rn by identifying (v1, . . . , vr) ∈ Vn,r

with (−v1, . . . ,−vr), form a family of closed, connected, smooth manifolds,
among which relatively few are stably parallelizable (see [5]). Note that
Xn,1 = P n−1, (n − 1)-dimensional real projective space, for which the span
question was solved by Adams [1]. The study of Xn,r for r > 1 was inaugu-
rated by P. Baum and W. Browder [8] and S. Gitler and D. Handel [11] in
the 1960’s, and has been a subject of ongoing interest since then ([4], [5], [6],
[7], [31], [32], [35], [36] etc.).

This paper (mentioned as a “later paper” in [31]), in combination with
[31], is an attempt to present the current state of knowledge concerning the
span question for the projective Stiefel manifolds Xn,r, r ≥ 2. This question
is related to the same problem for other important spaces. For instance,
for the flag manifold O(n)/((O(1))r × O(n− r)) we have that span(Xn,r) ≥
span(O(n)/((O(1))r ×O(n− r)). We note that the information available on
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the span of the above mentioned flag manifold is in general quite weak (see
[18]; an exception: for r = 2, quite a bit is known; see [3], [12], [15]).

In the sequel, the number dim(Xn,r) = nr−
(

r+1
2

)
will be denoted by dn,r;

we shall write just d instead of dn,r when (n, r) is clear from the context. For
the tangent bundle we have ([22], [38])

τn,r := TXn,r ≈ rξn,r ⊗ βn,r ⊕
(

r

2

)
ε, (2)

and stably

τn,r ⊕
(
r + 1

2

)
ε ≈ nrξn,r, (3)

where ξn,r (sometimes denoted just by ξ) is the line bundle associated to the
obvious double covering Vn,r −→ Xn,r, and βn,r is the “orthogonal comple-
ment” bundle characterized by rξn,r ⊕ βn,r ≈ nε. Note that ξn,1 = ξn−1, the
familiar Hopf line bundle over Xn,1 = P n−1.

Of course, (stable) span(Xn,r) can be at least i only if the Stiefel-Whitney
classes wd−i+j(τn,r) := wd−i+j(Xn,r), j ≥ 1, vanish. The isomorphism (3)
implies that

w(Xn,r) = (1 + w1(ξn,r))
nr. (4)

For deciding whether or not wi(Xn,r) vanishes, it is also necessary to know
the Z2-cohomology ring of Xn,r. By [11, 1.6],

H∗(Xn,r; Z2) = Z2[y]/(yN)⊗ V (yn−r, . . . , ŷN−1, . . . , yn−1), (5)

where y = w1(ξn,r), N = min{j; j ≥ n− r + 1,
(

n
j

)
≡ 1 (mod 2)}, and

V (yn−r, . . . , ŷN−1, . . . , yn−1)

is the Z2-vector space having the monomials
∏n−1

i=n−r yti
i with i 6= N − 1 and

ti ∈ {0, 1} as Z2-basis. For later use, we note that (5) immediately implies
the formula for the mod 2 Poincaré polynomial:

Pt(Xn,r; Z2) =
(1 + t + · · ·+ tN−1)(1 + tn−r) · · · (1 + tn−1)

1 + tN−1
.

Additionally, (5) determines all cup products in H∗(Xn,r; Z2) except for y2
i ,

which can be found using [4] since y2
i = Sqi(yi). Correcting misprints of [4],
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we reproduce the formulae for Steenrod squares here (these formulae were
also published in [39]). Let t := ν2(N) denote the exponent of the largest
power of 2 dividing N. Then one has

Sqi(yq−1) =
i∑

k=0

Aky
kyq+i−1−k +

∑
0≤k<j≤i

Bk,jy
q+k+i−N−jyN+j−k−1 + εyq+i−1,

where

ε =

{ (
n

q+2t−1−N

)(
q+2t−1−N

i−1

)
if t ≥ 3,

0 if t < 3,

Ak = A(q, i, k) =

(
q − 1− k

q − 1− i

)(
n

k

)
,

Bk,j = B(q, i, k, j) =

(
n

q

)(
N − 1− k

N − 1− j

)(
q −N

i− j

)(
n

k

)
.

Apart from X12,8, the parallelizability question for Xn,r, r ≥ 2, is settled
in [5] and in [6]. In addition to this, a complete solution to the vector field
problem on Xn,r is known for some families of (n, r). More precisely, for
Xn,1 = P n−1, one has, as a consequence of the solution of the vector field
problem for spheres [1], that span(Xn,1) = span(Sn−1) = ρ(n) − 1, where
ρ(n) = 2c + 8d for n expressed as (2a + 1)2c+4d, a, d ≥ 0, 0 ≤ c ≤ 3. One
calls ρ(n) the Hurwitz-Radon number of n, and this will also be useful later in
this work. At one extreme, for r close to n, it has long been known ([5]) that
Xn,n−1 and X2m,2m−2 (with m arbitrary) are parallelizable. Around 1998,
Zvengrowski [39] has determined span(X2m+1,2m−1) and span(Xn,n−3); thus
span(Xn,n−j) is also known for j ≤ 3. Our aim in this paper is to study the
other extreme, r close to 2, and calculate the span of Xn,r for some families
with r = 2, 3, 4, as well as to prove some general results on span(Xn,r).

From the formula (2), one immediately has that span(Xn,r) ≥ 1 when
r ≥ 2. In [18] and [19] we derived the strong lower bound

span0(Xn,r) ≥ kn,r (6)

for span0(Xn,r), where kn,r is defined as follows:

Definition 1.1 kn,r := span(nrξn−1)−
(

r+1
2

)
.



J. Korbaš and P. Zvengrowski 5

Note that we always have kn,r ≥ dn,r−n+1, since span(nrξn−1) ≥ nr−(n−1)
by standard stability properties of vector bundles. Since dn,r is in general
much larger than n−1, this shows that the resulting inequality dn,r−n+1 ≤
span0(Xn,r) ≤ dn,r already gives relatively sharp estimates for span0(Xn,r),
which of course can be improved by applying cohomology theory to reduce
the upper bound.

As was shown in [19], kn,r is in fact a lower bound for span(Xn,r) as
well, except possibly when n is odd and r = 2. This seems to be the most
intractable case and is studied in some detail in §2. We also prove Theorem
2.3 in §2, which improves the known lower bound for span(Xn−1,2) when n is
divisible by 8. This involves using an explicit version of the Hurwitz-Radon
multiplications, and an Appendix (§5) is added giving an elegant construction
of these multiplications based on ideas of Moreno [27] and Lam-Yiu [23], [24].

Then in §3 we prove that if 2 ≤ r ≤ ρ(n), then

span(Xn,r) = span0(Xn,r) = kn,r,

and we shall calculate span(Xn,r) for r = 2, 3 or 4, for suitable (infinitely
many) values of n, using the lower bound kn,r and other results.

In §4 we prove the following useful inequalities:

span(Xn,r+1) ≥ span(Xn,r),

and, for s ≥ 2, span(Xn,r+s) ≥ span0(Xn,r) +

(
s

2

)
. (7)

We close §4 with several conjectures about span(Xn,r), for which the results
in this paper and its predecessors provide strong evidence.

2 On stable span and span of Xn,2

The projective Stiefel manifold Xn,2 has an interesting geometric interpreta-
tion, as the tangent sphere bundle to P n−1; but this fact will not be used
here. Its dimension is of course 2n− 3.

For span0(Xn,2) we have the lower bound given in (6),

span0(Xn,2) ≥ kn,2 = span(2nξn,1)− 3.

In fact, as mentioned in the Introduction, kn,2 is known to also be a
lower bound for span(Xn,2) when n is even. Indeed, the span and stable
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span of Xn,2 with n even coincide ([18], [19]), and we shall show, in §3, that
span(Xn,2) = kn,2 in such cases. Of course, determining kn,r (or in particular
kn,2) is a special case of the solution of the “generalized vector field problem”
(this is the question of what is the span of any multiple of ξn−1 over P n−1,
for any n). The latter is not yet completely known, but the results of Lam
[21, Theorems 1.1, 3.1, Remark 3.5] and of Lam and Randall [25, 5.14], [26]
give the answer in the majority of cases and imply the following proposition.
The fact that the binomial coefficient

(
2m
m

)
for m ≥ 1 is even is implicitly

used in those cases where no binomial coefficient is explicitly given; see also
§3 for some further details and (in many cases) strengthened results.

Proposition 2.1 We have the following lower bounds.
n = 8m & m ≥ 1 &

(
2m

m−1

)
odd ⇒ span(Xn,2) ≥ kn,2 = n + 5.

n = 8m & m ≥ 2 &
(

2m
m−1

)
even ⇒ span(Xn,2) ≥ kn,2 ≥ n + 6,

span(X16,2) ≥ k16,2 = 23.

n = 8m + 1 & m ≥ 1 ⇒ span0(Xn,2) ≥ kn,2 ≥ n,
span0(X9,2) ≥ k9,2 = 13, span0(X17,2) ≥ k17,2 ≥ 22.
n = 8m + 2 & m ≥ 1 ⇒ span(Xn,2) ≥ kn,2 ≥ n + 2.

n = 8m + 3 & m ≥ 1 ⇒ span0(Xn,2) ≥ kn,2 ≥ n + 1.

n = 8m + 4 & m ≥ 0 &
(

2m+1
m

)
odd ⇒ span(Xn,2) ≥ kn,2 = n + 1.

n = 8m + 4 & m ≥ 2 &
(

2m+1
m

)
even ⇒ span(Xn,2) ≥ kn,2 ≥ n + 2.

n = 8m + 5 & m ≥ 0 &
(

2m+1
m

)
odd ⇒ span0(Xn,2) ≥ kn,2 = n.

n = 8m + 5 & m ≥ 2 &
(

2m+1
m

)
even ⇒ span0(Xn,2) ≥ kn,2 ≥ n + 1.

n = 8m + 6 & m ≥ 0 &
(

2m+1
m

)
odd ⇒ span(Xn,2) ≥ kn,2 = n− 1.

n = 8m + 6 & m ≥ 2 &
(

2m+1
m

)
even ⇒ span(Xn,2) ≥ kn,2 ≥ n + 3.

n = 8m + 7 & m ≥ 0 &
(

2m+1
m

)
odd ⇒ span0(Xn,2) ≥ kn,2 = n− 2.

n = 8m + 7 & m ≥ 2 &
(

2m+1
m

)
even ⇒ span0(Xn,2) ≥ kn,2 ≥ n + 2.

2

By a special case of [14, Theorem 1.6], there are one or two isomorphism-
classes of dn,2-plane bundles over Xn,2 which are stably isomorphic to the
tangent bundle τn,2; in other words, the James-Thomas number I(Xn,2) is 1 or
2, respectively. Clearly, span0(Xn,2) = span(Xn,2) if I(Xn,2) = 1. But, as we
shall see in Theorem 2.5, the equality I(Xn,2) = 1 is a rare phenomenon. In a
remark after the proof of Theorem 2.5, we shall outline an idea which perhaps
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can lead to solving the question of whether or not span0(Xn,2) = span(Xn,2)
if I(Xn,2) = 2 and n is odd; but we did not succeed in applying this idea up
to now. In view of this, since for n odd Proposition 2.1 gives lower bounds
for span0(Xn,2), but not for span(Xn,2), the following theorem is useful.

Theorem 2.2 For the projective Stiefel manifolds Xn,2 with n ≥ 7 odd one
has span(Xn,2) ≥ 4. In addition to this, one has span(X3,2) = 3 and
span(X5,2) = 5.

Proof. Suppose that n ≥ 7 is odd. Then dn,2 = 2n − 3 ≡ 3 (mod 4); since
n ≥ 7, we have dn,2 ≥ 11. It is clear, for instance from the formula (4), that
each of the manifolds Xn,2 is orientable. So by [20, 15.13], in order to prove
span(Xn,2) ≥ 4, it is enough to verify that now w2

2(Xn,2) does not vanish,
while wd−3(Xn,2) = 0.

From the formula (4) we obtain w2
2(Xn,2) = y4, and this is not zero (see

the description of H∗(Xn,r; Z2) in the Introduction), because N = n− 1 > 4.

In addition to this, wd−3(Xn,2) =
(

2n
6

)
y2n−6 = 0, because we obviously have

2n− 6 > N . So the theorem is proved for all n ≥ 7 odd.
Consider the two remaining spaces. Since any orientable 3-dimensional

manifold is parallelizable ([34]), span of X3,2 is 3. Finally, from Proposition
2.1 we have that span0(X5,2) ≥ 5. But, since d5,2 = 7, the James-Thomas
number of this manifold is 1 (see [14, Theorem 1.7]), and therefore its stable
span and span coincide. So we also have span(X5,2) ≥ 5. On the other hand,
span(X5,2) ≥ 6 is impossible; indeed, we have w2(X5,2) = y2 6= 0. As a
consequence, span(X5,2) = 5. 2

Before proving the next theorem, which improves to span(Sn−1) the lower
bound of 4 (given in Theorem 2.2) for span(Xn−1,2) whenever n ≡ 0 (mod 8),
some notation needs to be set up. For r = ρ(n), let e0, e1, . . . , er−1 be the
canonical orthonormal basis in Rr and ε0, . . . , εn−1 be the canonical orthonor-
mal basis in Rn; Rn−1 will be the subspace spanned by ε1, . . . , εn−1. For
any vector c ∈ Rn we shall write c′ for its projection into Rn−1. Thus, if
c = (c0, . . . , cn−1), then c′ = (0, c1, . . . , cn−1) = c− c0ε0.

Now let Rr ⊗R Rn → Rn be a norm preserving multiplication, denoted
u ⊗ v 7→ u · v := φu(v), where φu ∈ O(n) whenever ‖ u ‖= 1. In particular
we write φi(v) = ei · v, 0 ≤ i ≤ r− 1, and by replacing φi by φ−1

0 ◦φi (which
has no effect on the norm preserving property), we may suppose without loss
of generality that φ0 = I. Construction of such norm preserving forms is
carried out via [23], [24], [37], and briefly described in the appendix to this
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paper. As is shown there, it enjoys the following additional properties, of
which (ii) is classical and (iii) describes the first coordinate of φj(a):
P(i) e0 · v = v, i.e. φ0 = I,
P(ii) for i, j > 0, i 6= j, φ2

i = −I, φiφj + φjφi = 0,
P(iii) for j ≥ 1, a = (a0, . . . , an−1) ∈ Rn, ej · a− (ej · a)′ = ±aJ(j)ε0, where
the map J : {1, . . . , r − 1} � {1, . . . , n− 1} is injective.

Since, for i ≥ 1, the orthogonal skew symmetric transformation φi can
be replaced by −φi with no effect on the norm preserving property, we may
assume in P(iii) that ej · a− (ej · a)′ = −aJ(j)ε0, j ≥ 1.

Theorem 2.3 One has span(Xn−1,2) ≥ span (Sn−1).

Proof. For (a, b) ∈ Vn−1,2, i.e. a, b ∈ Rn−1, ‖ a ‖=‖ b ‖= 1, 〈a, b〉 = 0, define
wj(a, b) = ((ej · a)′, (ej · b)′) ∈ Rn−1 ⊕ Rn−1, 1 ≤ j ≤ r − 1.

First we show wj(a, b) is a tangent vector to Vn−1,2 at (a, b). We use the
explicit description of the tangent bundles to Vn,r and Xn,r given in [5, Lemma
2.2] (also in [38]). Let v = (a, b) denote a point of the Stiefel manifold Vn−1,2,
and let [v] = {v,−v} be the corresponding point in the projective Stiefel
manifold Xn−1,2. Then the tangent space T[v](Xn−1,2) consists of pairs [v, w],
where w = (x, y) with x, y ∈ Rn−1 is such that

〈a, x〉 = 〈b, y〉 = 〈a, y〉+ 〈b, x〉 = 0, [v, w] = [−v,−w].

The tangent space Tv(Vn−1,2) is similar (without identifications).
Noting that 〈x, y′〉 = 〈x, y〉 whenever x ∈ Rn−1, y ∈ Rn, we then have

〈a, (ej · a)′〉 = 〈a, ej · a〉 = 0, similarly for b, and finally

〈a, (ej · b)′〉+ 〈b, (ej · a)′〉 = 〈a, ej · b〉+ 〈b, ej · a〉 = 〈a, ej · b〉+ 〈−ej · b, a〉 = 0.

Second, since wj(−a,−b) = −wj(a, b), the wj induce well defined vector
fields on Xn−1,2.

Finally, let us show that w1(a, b), ..., wr−1(a, b) are linearly independent.
So suppose

∑r−1
j=1 λjwj(a, b) = 0, with not all λj zero. Write λ =

∑r−1
j=1 λjεj ∈

Rn−1. We also write, for later use, λ̃ =
∑r−1

j=1 λjej ∈ Rr. Without loss of

generality assume ‖ λ ‖= 1, so also ‖ λ̃ ‖= 1. By definition
∑r−1

j=1 λj(ej ·a)′ =∑r−1
j=1 λj(ej · b)′ = 0. Working with a, and using the equation for c′ as well as

the property of ej · a mentioned above, this gives
∑r−1

j=1 λj(ej · a+ aJε0) = 0,
where we now write J = J(j) for convenience. Thus

r−1∑
j=1

λjej · a = −(
r−1∑
j=1

λjaJ)ε0. (8)
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Trivially, |〈λ,
∑r−1

j=1 aJεj〉| = |∑r−1
j=1 λjaJ | =‖ −∑r−1

j=1(λjaJ)ε0 ‖. Now, ap-
plying successively (8) followed by the norm preserving property, this equals
‖ ∑r−1

j=1(λjej) · a ‖=‖ λ̃ ‖ ‖ a ‖= 1 · 1 = 1. Since the inner product of two
vectors, the first being a unit vector and the second having norm at most 1,
can have absolute value 1 if and only if they are parallel and the second has
norm 1, we have then that λ = ±∑r−1

j=1 aJεj. Exactly the same applies to b,

so λ = ±∑r−1
j=1 bJεj. Finally, since J = J(j) is injective by P(iii), this implies

that a, b are also parallel, giving the desired contradiction and completing
the proof. 2

Corollary 2.4 We have span(X7,2) = 7.

Proof. The lower bound 7 is obtained from the theorem, and Stiefel-Whitney
classes easily give the same upper bound. 2

Our next theorem shows that the manifolds Xn,2 mostly have James-
Thomas number 2.

Theorem 2.5 While the James-Thomas number is 1 for X3,2 and X5,2, it
equals 2 for the remaining projective Stiefel manifolds Xn,2, except possibly
for n = 2t + 1, t ≥ 3.

Proof. In the proof, we shall suppose n 6= 2t+1. Let BO be the classifying
space of the stable orthogonal group O, and let

σ : H i+1(BO; Z2) −→ H i(ΩBO; Z2)

be the suspension homomorphism. In applying [14, Theorem 1.6], we shall
replace the loop space ΩBO by O (see e.g. [2, 2.3.1 (iv)]). Then instead
of σ(wi+1), where wj is the j-th universal Stiefel-Whitney class, we shall for
convenience write vi ∈ H i(O; Z2), i ≥ 1. Now, by [14], it suffices to show
that for any map β : Xn,2 −→ O one has

∆(β) := β∗(v2n−3) +
2n−3∑
i=2

β∗(vi−1)w2n−2−i(Xn,2) = 0 ∈ H2n−3(Xn.2; Z2).

We have (see (5))

H∗(Xn,2; Z2) = Z2[y]/(yN)⊗ V (yq), (9)
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as an algebra, where N = n− 1, n according as n is respectively odd, even,
and q = n− 1, n− 2 according as n is respectively odd, even (note q is thus
always even). Since (4) implies

w2n−2−i(Xn,2) =

(
2n

2n− 2− i

)
y2n−2−i,

we have

∆(β) = β∗(v2n−3) +
2n−3∑
i=2

β∗(vi−1)

(
2n

2 + i

)
y2n−2−i.

To show this is 0 it will certainly suffice, since y2n−3 = 0, to prove that
β∗(vj) ∈ Z2[y]/(yN), j ≥ 1. Now we recall that by [9, (8.7)] one has for the
Steenrod squares

Sqi(vj) =

(
j

i

)
vi+j

for i ≤ j. Hence it is sufficient to show that

β∗(v2k−1) ∈ Z2[y]/(yN), k ≥ 1 .

This task is trivial if 2k − 1 < q, so one only has to consider the range for k
where 2k − 1 ≥ q. Then one has

β∗(v2k−1) = λyqy
2k−1−q (10)

for some λ ∈ Z2. Using [4, 2.1] (see the Introduction), one readily checks
that Sq1(yq) = 0, and applying Sq1 to (10), we obtain

λyqy
2k−q = β∗(v2k). (11)

Observe that the top class in H∗(Xn,2; Z2) is yqy
n−2 if n is odd or yqy

n−1 if n
is even. Hence in all the cases which we need to consider we have 2k−q < N ;
therefore yqy

2k−q 6= 0. On the other hand,

β∗(v2k) ∈ Z2[y]/(yN),

because
v2k = Sq2k−1

. . . Sq2Sq1(v1).

Finally, since 2k ≥ q + 2 ≥ N , we have β∗(v2k) = 0 and (11) implies that
λ = 0. 2
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We remark that for X2t+1,2 (t ≥ 3) the problem of determining James-
Thomas numbers remains open. To close this section, we outline (as we
promised before the statement of Theorem 2.2) a possible way of thinking
(in the spirit of [18, p. 8-9]) about the relation between stable span and
span of any odd-dimensional smooth closed manifold M with I(M) = 2, in
particular for M = Xn,2 when n is odd and I(Xn,2) = 2. In this case, for
any dn,2-plane bundle α stably isomorphic to τn,2 one has (see [33]) a number
bB(α) ∈ Z2, called the Browder-Dupont invariant. This bB distinguishes
between those two classes of dn,2-plane bundles stably isomorphic to τn,2,
and bB(τn,2) is precisely the Kervaire mod 2 semi-characteristic

χ2(Xn,2) =
n−2∑
i=0

dim (H i(Xn,2; Z2)) (mod 2). (12)

Observe that for any odd-dimensional Xn,r, the Kervaire semi-characteristic
is nothing but 1

2
P1(Xn,r; Z2) mod 2. From the formula for the Poincaré

polynomial Pt(Xn,r; Z2) it is easy to see that P1 is divisible by 4 for r ≥ 2;
thus the Kervaire semi-characteristic vanishes in all such cases. Now suppose
that we are given some Xn,2 with n odd and I(Xn,2) = 2 about which we
know that span0(Xn,2) is some number s; then there is a vector bundle η
such that τn,2 ⊕ ε ≈ η ⊕ (s + 1)ε. Since, as we have seen, bB(τn,2) = 0, it
is enough to be able to show that bB(η ⊕ sε) = 0 in order to conclude that
τn,2 ≈ η ⊕ sε, and span(Xn,2) = s = span0(Xn,2). One can try to proceed
analogously knowing that span0(Xn,2) ≥ k for some k (for instance k = kn,2),
when one wants to show that also span(Xn,2) ≥ k.

3 The span of Xn,r for r ≤ ρ(n) and for r ≤ 4

The following theorem and its corollary allow us to calculate the stable span
and also the span of those projective Stiefel manifolds Xn,r satisfying r ≤
ρ(n), at least to within the knowledge of kn,r.

Theorem 3.1 If r ≤ ρ(n), then we have span0(Xn,r) = kn,r.

Proof. If r ≤ ρ(n), then (as shown in the Appendix) there exists a Z2-
equivariant (indeed linear) cross section of the fibre bundle Vn,r → Vn,1 =
Sn−1. This therefore induces a cross section s of the fibre bundle π : Xn,r →
Xn,1 = P n−1 such that s∗(ξn,r) ≈ ξn,1. Since also π∗(ξn,1) ≈ ξn,r, it follows
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that span(mξn,r) = span(mξn,1) for any m. This yields (see (3) and Definition
1.1)

span0(Xn,r) = span(nrξn,r)−
(
r + 1

2

)
= span(nrξn,1)−

(
r + 1

2

)
= kn,r.

2

Corollary 3.2 If 2 ≤ r ≤ ρ(n) then we have span(Xn,r) = kn,r.

Proof. The hypotheses imply n is even. Then, as a special case of [19, The-
orem, p. 100]), span(Xn,r) ≥ kn,r. Theorem 3.1 therefore implies now that
span(Xn,r) ≥ span0(Xn,r), and, as a consequence, span(Xn,r) = span0(Xn,r).

2

We next calculate the span for several infinite families of projective Stiefel
manifolds Xn,r with 2 ≤ r ≤ 4; we shall use various methods for showing,
in each case under question, that the lower and upper bounds coincide. For
cases (a)-(d), which are strengthenings of results in Proposition 2.1, the fol-
lowing special binomial coefficients are used. All follow readily from Kum-
mer’s formula

ν2

(
s + t

t

)
= α(s) + α(t)− α(s + t),

where ν2 was defined in §1 and α(t) is the number of 1’s in the dyadic
expansion of t.

ν2

(
2m

m

)
= α(m)

= 1, m = 2a, a ≥ 0,

≥ 2, otherwise,

ν2

(
2m + 1

m

)
= α(m + 1)− 1


= 0, m = 2a − 1, a ≥ 0,

= 1, m = 2a + 2b − 1, 0 ≤ a < b,

≥ 2, otherwise,

ν2

(
2m

m− 1

)
= α(m−1)+α(m+1)−α(m)


= 0, m = 2a − 1, a > 0,

= 1, m = 2a + 2b − 1, 0 < a < b,

≥ 2, otherwise.
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Theorem 3.3 We have that span(X2t,2) = k2t,2, in particular:
(a) If n = 8m, then span(Xn,2) = n + 5 for m = 2a − 1, i.e. n = 2a+3 − 8
(a > 0). Also span(X16,2) = 23.
(b) If n = 8m + 2, then span(Xn,2) = n + 2 for m = 2a, i.e. n = 2a+3 + 2
(a ≥ 0).
(c) If n = 8m + 4, then span(Xn,2) = n + 1 for m = 2a − 1, i.e. n = 2a+3− 4
(a ≥ 0), and span(Xn,2) = n+2 for m = 2a +2b− 1, i.e. n = 2a+3 +2b+3− 4
(0 ≤ a < b).
(d) If n = 8m+6, then span(Xn,2) = n− 1 for m = 2a− 1, i.e. n = 2a+3− 2
(a ≥ 0), and span(Xn,2) = n+3 for m = 2a +2b− 1, i.e. n = 2a+3 +2b+3− 2
(0 ≤ a < b).
In addition, we have:
(e) For m ≥ 3, span(X2m−2,3) = 2m+1 − 6.
(f) For m ≥ 2, span(X2m+1,3) = 2m+1 − 3.
(g) For m ≥ 3, span(X2m−2,4) = 3 · 2m − 10.

Proof. The fact that span(X2t,2) = k2t,2 is an immediate consequence of
Corollary 3.2, and (a)-(d) are then clear from Proposition 2.1 together with
the above formulae for binomial coefficients.

(e) and (g) From [21, Theorem 1.1] combined with [19, Theorem, p. 100]
(note that for Xn,3 we could derive a result similar to Proposition 2.1), we
obtain that span(X2m−2,3) ≥ 2m+1 − 6 = k2m−2,3. In addition to this, k2m−2,3

is an upper bound, too, because wd−2m+1+6(X2m−2,3) = y2m−6 does not vanish
(note that now N = 2m − 4). This proves (e); part (g) can be proved in an
analogous way.

(f) Since k2m+1,3 = 3 · 2m + 3 − 2m − 6 = 2m+1 − 3, we have (apply-
ing again [19, Theorem, p. 100]) that span(X2m+1,3) ≥ 2m+1 − 3. Now
wd−2m+1+3(X2m+1,3) = 0, so more delicate techniques are needed to show
that 2m+1 − 3 is also an upper bound for the span. Indeed, in this case both
primary and secondary cohomology operations will be used.

We know (see e.g. [18]) that span(X2m+1,3) ≥ 2m+1 − 2 would imply the
existence of a map f : X2m+1,3 → X3·2m+3,2m+1+4 such that f ∗(ξ) ≈ ξ. Hence,
in cohomology, we would then have that f ∗(Y ) = y, where

H∗(X2m+1,3; Z2) = Z2[y]/(y2m

)⊗ V (y2m−2, y2m)

and

H∗(X3·2m+3,2m+1+4; Z2) = Z2[Y ]/(Y 2m

)⊗ V (Y2m , Y2m+1, Y2m+2, . . . , Y3·2m+2).
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Using the squaring operations as given in §1, the following are easily calcu-
lated and will be recorded here for future use in this proof.

Sq1(Y2m) = 0, Sq1(y2m) = 0, (13)

Sq1(y2m−2) = yy2m−2, (14)

Sq2(y2m) = y2y2m , (15)

Sq2(Y2m) = 0. (16)

To now show that such a map f cannot exist, we will use the Steen-
rod algebra A2 and also the secondary Bockstein cohomology operation β2

corresponding to the relation Sq1Sq1 = 0. We know (see [11]) that, up to
homotopy type, there is a Serre fibration π : Xn,r → P∞, with fibre the
Stiefel manifold Vn,r. Let i : Vn,r → Xn,r be fibre inclusion; recall that
H∗(Vn,r; Z2) = V (xn−r, . . . , xn−1), and we have i∗(yj) = xj.

If ξ is the Hopf line bundle over P∞, one has π∗(ξ) ≈ ξ; if we write
H∗(P∞; Z2) = Z2[x] with x = w1(ξ), the equivalent of π∗(ξ) ≈ ξ is π∗(x) = y.

In the Serre spectral sequence of the fibration π : X2m+1,3 → P∞, the
element x2m−1 is transgressive with τ(x2m−1) = Sq1(x2m−1). It follows, by
the third Peterson-Stein formula [28, Chap. 16, Theorem 3] and [4], that

i∗(β2(π
∗(x2m−1))) = Sq1(x2m−1) = x2m ,

modulo indeterminacy i∗(Sq1(H2m−1(X2m+1,3; Z2))). In H2m−1(X2m+1,3; Z2)
we take {y2m−1, yy2m−2} as basis. Now Sq1(y2m−1) = y2m

= 0, also (14) and
the Cartan formula imply Sq1(y · y2m−2) = y2 · y2m−2 + y · yy2m−2 = 0. Hence
the indeterminacy vanishes, and we have

i∗β2(y
2m−1) = x2m (17)

as an “honest equation”.
Using the same reasoning in X3·2m+3,2m+1+4, one finds similarly that

i∗β2(Y
2m−1) = x2m , (18)

again with zero indeterminacy.
It follows that β2(y

2m−1) = a · y2y2m−2 + b · y2m , for some a, b ∈ Z2, and
β2(Y

2m−1) = c ·Y2m , for some c ∈ Z2, both with zero indeterminacy. Noting
that i∗(y) = i∗π∗(x) = 0, and using (17), the first equation gives

x2m = i∗β2(y
2m−1) = a · i∗(y2y2m−2) + b · i∗(y2m) = 0 + b · x2m ,
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and therefore b = 1. Similarly, using (18), one finds c = 1 and thus
β2(Y

2m−1) = Y2m .
The naturality of β2 is expressed by the equation

f ∗(β2(Y
2m−1)) = β2(f

∗(Y 2m−1)), (19)

where the indeterminacy is

f ∗Sq1(H2m−2(X3·2m+3,2m+1+4; Z2)) + Sq1(H2m−2(X2m+1,3; Z2)) = 0,

as we have seen above. It follows that

f ∗(Y2m) = f ∗(β2(Y
2m−1)) = β2(f

∗(Y 2m−1) = β2(y
2m−1) = a · y2y2m−2 + y2m .

We show that a = 0. Indeed, we have 0 = f ∗(0) = f ∗(Sq1(Y2m)) =
Sq1(f ∗(Y2m)) = Sq1(y2m) + a · Sq1(y2y2m−2) = a · y3y2m−2, the last equal-
ity following from (13), (14) and the Cartan formula, and thus a = 0.

So we have shown
f ∗(Y2m) = y2m .

But this implies, using (15), that Sq2(f ∗(Y2m)) = Sq2(y2m) = y2y2m+1 does
not vanish. On the other hand, using (16), the same element f ∗(Sq2(Y2m)) =
f ∗(0) vanishes. Of course, this is a contradiction, and we have shown that
span(X2m+1,3) ≤ 2m+1− 3 for m ≥ 2. The proof of part (f), and of the whole
Theorem 3.3, is complete. 2

We remark that the same techniques used above to compute the secondary
Bockstein operation can be used to compute any secondary cohomology op-
eration Φ of degree t on xN−t, x ∈ H1(Xn,r; Z2), assuming of course xN−t

is in the domain of Φ.

4 Inequalities for the span and some conjec-

tures

A useful piece of information on the span of projective Stiefel manifolds is
also the following.

Theorem 4.1 One has span(Xn,r+1) ≥ span(Xn,r), and, for s ≥ 2,

span(Xn,r+s) ≥ span0(Xn,r) +

(
s

2

)
.
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Proof. The first assertion is an immediate consequence of the existence of a
smooth fibration p : Xn,r+1 → Xn,r. For the second, using the notation of
[19], note that vector bundle isomorphisms τn,r+1 ≈ p∗τn,r ⊕ β′n,r+1 ((iii) in
[19, p. 98]) and p∗β′n,r ≈ β′n,r+1 ⊕ ε ((ii) in [19, p. 98]) describe the effect
of the pull-back p∗ on the tangent bundle τn,r and on the twisted orthogonal
complement bundle β′n,r ≈ βn,r⊗ξn,r (βn,r is described in §1). Iterating these
isomorphisms s times, one easily establishes inductively, for the fibration
q : Xn,r+s → Xn,r, that

τn,r+s ≈ q∗(τn,r)⊕
(

s

2

)
ε⊕ sβ′n,r+s.

If s ≥ 2 then the right hand side can be rewritten

q∗(τn,r ⊕ ε)⊕ (

(
s

2

)
− 1)ε⊕ sβ′n,r+s,

which has span at least as great as (span0(Xn,r)+1)+(
(

s
2

)
−1) = span0(Xn,r)+(

s
2

)
, completing the proof. 2

By saying that r is in the lower range of n we roughly mean that r < n/2;
see [7] for precise information on the lower range. Based on the results of
this paper, [17], and other predecessors we make the following conjectures.

Conjectures 4.2 (A) span(Xn,r) ≥ kn,r.

(B) span(Xn,r) = span0(Xn,r).

(C) In the lower range, span(Xn,r) = kn,r.

Remarks 4.3 (1) Conjecture 4.2(A) is proved in [19] for all n, r except n
odd, r = 2.

(2) Conjecture 4.2(B) implies Conjecture 4.2(A), and (B) is proved for rough-
ly 70% of all (n, r) pairs using the results in [20, Ch. 20]; see also [18],
[19].

(3) Conjecture 4.2(C) is supported by various results in the present paper,
especially Corollary 3.2 and Theorem 3.3, and all other calculations
to date. For n ≤ 18 a small number of exceptions can and do occur,
because the product rn can be divisible by φ(n− 1) when n ≤ 18; here
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as usual φ(n) is the number of integers j satisfying 1 ≤ j ≤ n and
j ≡ 0, 1, 2, 4 (mod 8). In the upper range, it is usually the case that
span(Xn,r) > kn,r.

(4) All Conjectures 4.2(A),(B),(C), are true when r = 1. This is trivial
for (A), (C). For (B), when n is odd, it follows because the Euler
characteristic χ(Xn,1) = χ(RP n−1) = 1 is odd. For n even it is proved
in [14].

5 Appendix, Hurwitz-Radon Multiplications

In this appendix a construction of the Hurwitz-Radon multiplications

F : Rr ⊗ Rn → Rn, r = ρ(n),

is briefly outlined. As in §1, we write n = (2a + 1)2c+4d, a, d ≥ 0, 0 ≤
c ≤ 3, and ρ(n) = 2c + 8d. The method is that of Lam and Yiu [24], [23],
uses Cayley-Dickson algebras (cf. Moreno [27]), and could be considered a
shorter and more elegant version of [37]. The facts essential to the proof
of Theorem 2.3 will also be established. These multiplications all have the
norm-preserving property ‖ F (u⊗ v) ‖=‖ u ‖ · ‖ v ‖.

For details of the construction of the Cayley-Dickson algebra An, of
real dimension 2n, we refer to [27]. To commence it suffices to recall that
A0 = R, A1 = C, A2 = H, A3 = O (respectively the reals, complex numbers,
quaternions, and octonions), well known algebras with norm-preserving mul-
tiplications. The sedenions A4 will be discussed and applied in the following
paragraph. The algebras Ai, 0 ≤ i ≤ 3, with multiplication denoted F ,
suffice to construct the Hurwitz- Radon multiplications for the case d = 0,
i.e. n = (2a + 1)2c, 0 ≤ c ≤ 3 (note that then r = ρ(n) = 2c) by means of
the composition

Rr ⊗ Rn = Rr ⊗ (Rr ⊗ R2a+1) ≈ (Rr ⊗ Rr)⊗ R2a+1 F⊗id−→ Rr ⊗ R2a+1 = Rn .

The corresponding orthogonal transformations φ0, φ1, . . . , φr−1 (defined in
§2) are well known to satisfy properties P(i), P(ii) stated in §2. They are also
clearly given by signed permutation matrices with an equal number of plus
and minus signs (apart from φ0 = In), since this is true for the multiplication
F in Ai. In addition, for 1 ≤ i < j ≤ r − 1 let us write v = (x1, ..., xn) ∈
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Rn, and φi(v) = (±xσ(1), ...,±xσ(n)), φj(v) = (±xτ(1), ...,±xτ(n)) for some
permutations σ, τ , and some choice of signs. Since φi(v) ⊥ φj(v), it is clear
that σ(k) 6= τ(k), 1 ≤ k ≤ n, giving (by taking k = 1) property P(iii). This
completes the case d = 0.

The Lam-Yiu construction, for d > 0, gives an inductive procedure such
that replacing n by 16n will increase r to r +8, this being precisely what the
Hurwitz-Radon formula asserts. To this end we turn to the sedenions A4.
According to the Cayley-Dickson construction they consist of ordered pairs
(u, v), where u, v ∈ O, added coordinate-wise and multiplied by the rule
(u, v)(x, y) = (ux− yv, yu + vx). Unlike the norm-preserving multiplication
in Aj, j = 0, 1, 2, 3, A4 has divisors of zero. However, restricting the
multiplication of A4 to R9⊗R16 → R16, where R9 = Rρ(16) is taken to be the
subspace

{(a0, a1, a2, a3, a4, a5, a6, a7, a8, 0, 0, 0, 0, 0, 0, 0); ai ∈ R, i = 0, . . . , 8},

it is easy to show that this restricted multiplication is norm-preserving. We
denote it Φ, and it can also be found written in tabular form in [13], p.
4. Taking the standard basis e0, e1, ..., e8 for R9, one defines orthogonal
transformations γi ∈ O(16), 0 ≤ i ≤ 8, by γi(v) = Φ(ei ⊗ v). As usual
γ0 = I, and for 1 ≤ i, j ≤ 8, γi is skew symmetric, γ2

i = −I, and
γiγj +γjγi = 0, i 6= j, it is also standard that these properties are equivalent
to the multiplication being norm-preserving. In addition it is clear, using the
definition or the table in [13], that each γi, i > 0, is a signed permutation
matrix with an equal number of plus and minus signs.

To effect the Lam-Yiu construction, one also defines Γ = γ1 · · · γ8. One
can easily verify that Γ is symmetric, Γ2 = I, and for i > 0 one has
Γγi + γiΓ = 0. Being a product of signed permutation matrices it must
also be a signed permutation matrix, indeed, it is easy to check that for
x = (x1, ..., x16), Γ(x) = (−x9, x10, x11, ..., x16,−x1, x2, x3, ..., x8).

Now suppose one has a norm-preserving multiplication F : Rr ⊗ Rn →
Rn, then just as for Φ one defines r = ρ(n) orthogonal transformations
θ0, ..., θr−1 ∈ O(n). As in §2 (just before P(i)-P(iii)), we may suppose that
θ0 = I. Then the remaining θi, 1 ≤ i ≤ r−1, are skew symmetric and satisfy
the same identities as the γi above. In addition, we assume (inductively) that
they are signed permutation matrices. Then we construct a norm-preserving
multiplication G : Rρ(n)+8 ⊗ R16n → R16n ≈ Rn ⊗ R16 by defining the
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corresponding ρ(n) + 8 = ρ(16n) orthogonal transformations in O(16n) as

φ0 = I, φ1 = θ1 ⊗ Γ, . . . , φρ(n)−1 = θρ(n)−1 ⊗ Γ,
φρ(n) = I ⊗ γ1, . . . , φρ(n)+7 = I ⊗ γ8.

One easily checks that the φi satisfy the same identities as the γi, θi, and
hence define a norm-preserving multiplication on R16n. Furthermore, the
tensor product of signed permutation matrices is obviously again a signed
permutation matrix. Starting from the already completed case d = 0, this
construction inductively produces the Hurwitz-Radon multiplications, as a
family of skew symmetric signed permutation matrices (and the first being
I). This establishes properties P(i), P(ii) used in the proof of Theorem 2.3,
and an argument similar to that used above in the d = 0 case, also gives
property P(iii).

The fact established above, that the Hurwitz-Radon multiplications are
given by signed permutation matrices, is also of interest in the combinatorial
study of Hadamard matrices. Although this fact is likely known, perhaps
even since the time of Hurwitz and Radon, to the best of the authors’ knowl-
edge it (or its proof) does not appear in the literature.
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[39] P. Zvengrowski, Remarks on the span of Xn,r, XI Brazilian Topology Meeting
(Rio Claro 1998), 85-98, World Sci. Publishing, River Edge, NJ 2000.


